1,334 research outputs found

    Low temperature dephasing saturation from elastic magnetic spin disorder and interactions

    Full text link
    We treat the question of the low temperature behavior of the dephasing rate of the electrons in the presence of elastic spin disorder scattering and interactions. In the frame of a self-consistent diagrammatic treatment, we obtain saturation of the dephasing rate in the limit of low temperature for magnetic scattering, in agreement with the non-interacting case. The magnitude of the dephasing rate is set by the strength of the magnetic scattering rate. We discuss the agreement of our results with relevant experiments.Comment: This paper supersedes cond-mat/021022

    Комп'ютерна обробка впливу шуму на виробництві

    Get PDF

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc

    Power Converters of the Main Dipole and Quadrupole Magnet Strings of the Antiproton Decelerator at CERN

    Get PDF
    The two main power converters for the dipoles (D) and quadrupoles (Q) are presented as part of the complex power converter system of the Antiproton Decelerator. The operational requirements and the performance specifications for deceleration from 3.5 to 0.1 GeV/c are discussed. The layout and design of the power part, consisting of a 12-pulse thyristor rectifier and a switch-mode parallel active filter (AF), and of the precision regulation are described. The alternatives for integrating the AF into the current and voltage regulation loops are outlined. Problems encountered and results of tests are reported

    Side-entrainment in a jet embedded in a sidewind

    Full text link
    Numerical simulations of HH jets never show side-entrainment of environmental material into the jet beam. This is because the bow shock associated with the jet head pushes the surrounding environment into a dense shell, which is never in direct contact with the sides of the jet beam. We present 3D simulations in which a side-streaming motion (representing the motion of the outflow source through the surrounding medium) pushes the post-bow shock shell into direct contact with the jet beam. This is a possible mechanism for modelling well collimated "molecular jets" as an atomic/ionic flow which entrains molecules initially present only in the surrounding environment.Comment: 8 pages, 12 figures, 1 table, accepted for publication in Ap

    EFFECT OF DIFFERENT LOW BACK TRAINING PROGRAMS ON LUMBAR SPINE KINESTHESIA

    Get PDF
    Reduced kinesthetic perceptions can impair lower back sensorimotor functions and result in increased injury risk. The effect of low back training programs on lumbar spine kinesthetic sensibility is undetermined. There was a back strengthening exercise group (with low back pain; training 4.4 h/wk), a “classical” back training program group (with low back pain; training 4.9 h/wk) and a control group (training 5.4 h/wk). During an active reproduction test, subjects performed trunk positions in random order: flexion [A(0°-20°), B(20°-40°)], lateral flexion [C(0°-30°)], Using a 3D-ultrasound motion analysis system the repositioning error was calculated from the given target position to the subject perceived target position, before and after a 5 week training period. Results show decreased repositioning error after the training for both training groups

    SPECIFIC TRAINING CAN IMPROVE SENSORIMOTOR CONTROL IN TYPE 2 DIABETIC PATIENTS

    Get PDF
    Diabetes mellitus often is associated with proprioceptive and sensory deficits as a result of distal diabetic polyneuropathy (DPN). The aim of this prospective controlled longitudinal trial was to evaluate a specific sport intervention program regarding sensorimotor capabilities in type 2 diabetic patients compared to healthy controls. A higher incidence of fall-related injuries is given in the literature (Allet et al.2008; Allet et al 2009)

    Towards Quantum Sensing of Chiral-Induced Spin Selectivity: Probing Donor-Bridge-Acceptor Molecules with NV Centers in Diamond

    Full text link
    Photoexcitable donor-bridge-acceptor (D-B-A) molecules that support intramolecular charge transfer are ideal platforms to probe the influence of chiral-induced spin selectivity (CISS) in electron transfer and resulting radical pairs. In particular, the extent to which CISS influences spin polarization or spin coherence in the initial state of spin-correlated radical pairs following charge transfer through a chiral bridge remains an open question. Here, we introduce a quantum sensing scheme to measure directly the hypothesized spin polarization in radical pairs using shallow nitrogen-vacancy (NV) centers in diamond at the single- to few-molecule level. Importantly, we highlight the perturbative nature of the electron spin-spin dipolar coupling within the radical pair, and demonstrate how Lee-Goldburg decoupling can preserve spin polarization in D-B-A molecules for enantioselective detection by a single NV center. The proposed measurements will provide fresh insight into spin selectivity in electron transfer reactions.Comment: 7 pages and 4 pages appendix including an extensive description of the initial spin state of photo-generated radical pair
    corecore